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Flow in a tube with non-uniform, 
time-dependent curvature: governing equations 

and simple examples 
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(Received 8 February 1996 and revised form 7 May 1996) 

Motivated by the study of blood flow in the major coronary arteries, which are situated 
on the outer surface of the pumping heart, we analyse flow of an incompressible 
Newtonian fluid in a tube whose curvature varies both along the tube and with time. 
Attention is restricted to the case in which the tube radius is fixed and its centreline 
moves in a plane. Nevertheless, the governing equations are very complicated, because 
the natural coordinate system involves acceleration, rotation and deformation of the 
frame of reference, and their derivation forms a major part of the paper. Then 
they are applied to two particular, relatively simple examples: a tube of uniform 
but time-dependent curvature; and a sinuous tube, representing a small-amplitude 
oscillation about a straight pipe. In the former case the curvature is taken to be 
small and to vary by a small amount, and the solution is developed as a triple power 
series in mean curvature ratio do, curvature variation E and Dean number D. In 
the latter case the Reynolds number is taken to be large and a linearized solution 
for the perturbation to the flow in the boundary layer at the tube wall is obtained, 
following Smith (19764. In each case the solution is taken far enough that the first 
non-trivial effects of the variable curvature can be determined. Results are presented 
in terms of the oscillatory wall shear stress distribution and, in the uniform curvature 
case, the contribution of steady streaming to the mean wall shear stress is calculated. 
Estimation of the parameters for the human heart indicates that the present results 
are not directly applicable, but point the way for future work. 

1. Introduction 
The flow of a viscous fluid in a curved tube is a classical problem in fluid dy- 

namics with both technological and, especially, physiological applications. The main 
physiological application is to blood flow in arteries, because they are curved (and 
branched) and the distribution of atherosclerosis appears to be correlated with some 
measure of the time-dependent viscous wall shear stress exerted on the artery wall 
by the flowing blood, especially in the vicinity of geometric complexities, curves and 
branches, which vary from subject to subject. The mean value of wall shear stress 
has an influence on many factors in arterial endothelial cells, notably their mass 
transport properties and their production of chemicals such as nitric oxide, which 
are involved in atherosclerosis (Davies 1995). Fluctuations in wall shear stress are 
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also known to be important; see Friedman (1993), Giddens, Zarins & Glagov (1993), 
Pedley (1995) for recent review articles. A full assessment of ‘geometrical risk factors’ 
requires the ability to calculate the time-dependent wall shear stress at the relevant 
sites. The major coronary arteries are important sites for atherosclerosis because it 
can lead to heart attacks. However, a significant difficulty in predicting wall shear 
stress in these arteries comes from the fact that they are embedded in the surface 
of the heart, and therefore their overall geometry, represented by the curvature and 
torsion of the vessel centreline, as well as the diameter and length, changes with time 
during the cardiac cycle (Pao, Lu & Ritman 1992; see also figure 1). It is the purpose 
of this paper to begin to investigate the mechanics of flow in such time-dependent 
vessels. 

The first theoretical description of steady flow in a uniform curved tube was by 
Dean (1927, 1928), who noted that, when the curvature ratio 60 (= a/R where a 
is the tube radius and R is the radius of curvature of the centreline) is small, fully 
developed flow depends only on a single parameter Do, proportional to the product 
of the Reynolds number and 8;”. This parameter is now called the Dean number. 
Dean himself calculated the velocity and pressure fields as series in powers of DO, the 
leading term being Poiseuille flow and the first correction incorporating secondary 
motions in the form of a pair of vortices, carrying flow across the centre of the tube 
to the outside of the curve, and back again near the walls. At larger values of DO the 
flow must be computed numerically, and the value of DO at which successful solutions 
have been computed has been increasing. Good early computations were provided 
by McConalogue & Srivastava (1968) and Collins & Dennis (1975) who took the 
two-vortex solution up to DO = 600 and Do = 5000 respectively. Among the most 
interesting recent results are those of Daskopoulos & Lenhoff (1989) who showed 
that the equations for steady fully-developed flow, in the small-bo limit, have several 
different four-vortex solutions for values of Do above a critical value, though only the 
two-vortex solution is stable (Yanase, Goto & Yamamoto 1989). This suggests that 
the dynamical system represented by curved tube flow is not a simple one, and that 
unsteady flow is likely to be quite complicated. 

Fully developed unsteady flow in fixed uniform curved tubes, of small do, driven by a 
time-dependent pressure gradient has also received considerable theoretical attention. 
The pioneering analytical study by Lyne (1971) considered a sinusoidally oscillating 
pressure gradient, with zero mean, at sufficiently high values of the frequency, S Z ,  
that the Stokes layer thickness (v/SZ) is small compared with the tube radius 
a. It is within the Stokes layer for the axial velocity that secondary motions are 
generated by the nonlinear ‘centrifugal force’ terms in the equations. These secondary 
motions have a non-zero mean which does not go to zero at the edge of the Stokes 
layer and therefore drives a (two-vortex) steady secondary streaming flow across the 
whole tube. The direction of the secondary streaming is opposite to that for steady 
Dean flow. Subsequent workers have superimposed a mean onto the oscillation in 
order to investigate how the two types of secondary motion interact (Smith 1975; 
Blennerhassett 1976). Blennerhassett also found non-uniqueness at certain parameter 
values. 

Non-fully developed steady (and unsteady) flow has been examined, both in the 
forms of entry flow with a flat velocity profile, as from a large reservoir (e.g. Singh 
1975; Yao & Berger 1975), and of flow entering from a straight pipe with a parabolic 
profile (Smith 1976~). Analytical solutions have predominated, since they provide a 
more fundamental understanding, but are being supplemented by numerical solutions 

112 . 
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in parts of the parameter space that the analysis cannot reach. The literature on 
curved tube flow up to about 1980 was thoroughly reviewed by Pedley (1980, chapter 
4) and by Berger, Talbot & Yao (1983). 

An examination of figure 1 reveals that, if the branches are neglected, the major 
blood vessels have two principal forms: large tubes whose curvature is single-signed 
and varies relatively slowly with longitudinal position, and small undulating tubes 
whose curvature changes sign and varies over a shorter length scale. During the 
cardiac cycle, the radii of curvature will change, generally increasing during left 
ventricular filling; there are also torsion and length changes (Pa0 et al. 1992). It is 
the purpose of this paper to begin an examination of viscous flow in tubes whose 
centreline curvature varies with position and time. Torsion is neglected, the centreline 
is taken to be inextensible, the tube cross-section is taken to be circular with uniform 
radius independent of time, and points on the wall which at one instant lie in 
a plane perpendicular to the centreline at a point So remain in that plane as SO 
moves and the plane rotates. Moreover the centreline is taken to lie in a constant 
plane. Nevertheless, the problem is very complicated because the natural transverse 
coordinate system at a given point on the centreline (So) is non-inertial, experiencing 
time-dependent translation and rotation. Thus the main aim of this paper is to 
establish the appropriate governing equations. This is done in $2. Then in #3 and 4 
we consider two simple limiting cases in which the equations can be greatly simplified 
but the new terms have a calculable effect: flow of constant flow rate (a )  through 
a tube of uniform curvature which varies at low frequency (a not-quite-quasi-steady 
perturbation of Dean’s solution) and (b )  through a tube with small-amplitude, time- 
dependent undulations about a straight configuration (a perturbation to Poiseuille 
flow). In each case the focus will be on the main contributions to the time-dependent 
wall shear stress, and on any steady streaming which might arise. In the final section 
we discuss the solutions in the context of the original motivation, blood flow in 
coronary arteries. 

2. Governing equations 
We start from the vector form of the Navier-Stokes and continuity equations for 

an incompressible viscous fluid, written with respect to an inertial frame of reference: 

V .2 ’  = 0,  (2.1) 

Here the variables have their usual meanings and are dimensional. 
Because of the complex motion of the chosen frame of reference, we find it safer to 

make the coordinate transformation from first principles, without invoking classical 
results on motion in an accelerated and rotating frame of reference. 

We define s^ as the dimensional distance along the centreline from a specified origin, 
(?, 0) as polar coordinates in the cross-sectional plane and ? as the dimensional time; 
the tube wall is at i = a. The dimensional Cartesian coordinate system (A , j ,? ,?) ,  
where the centreline moves in the (2, j)-plane, is then transformed into the curvilinear 
system (?,0,s^,t). We assume that the centreline of the tube is given by a known 
function 

Eo = of($, 2) 9 (2.3) 
where PO = goex + joe, is the Cartesian position vector of a general point So on the 
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FIGURE 1. Coronary angiogram of a post-mortem human heart, fixed at diastolic in-vivo dimensions 
by pressure perfusion at 100 mmHg (courtesy of Professor W. A. Seed, Charing Cross and 
Westminster Medical School). 
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liagrarn to show the time-dependent curvilinear coordinate system used to obtain the 
governing equations (general). 

centreline (see figure 2). Then if + is the angle between the tangent to the centreline 
at that point and the %axis we have 

(2.4) 
"I " j z  = 20 - icos8 sin+, 9 = jj0 + icos8 cos +, 2 = i sin8, t = t ,  

since P = 20 + Per. The coordinate directions are related by 

(2.5) 
e, = -ex sin + cos 8 + ey cos + cos 8 + e, sin 8 ,  

ee = ex sin +sin 8 - ey cos + sin 8 + e, cos 8 ,  
e, = ex cos + + ey sin + 

or 

(2.6) 
ex = -e, sin +cos 8 + ee sin4sin 8 + e, cos 4 ,  
ey = e, cos + cos 8 - ee cos + sin0 + e, sin+, 

e, =ersin8+eecos8. 

Note that e,, ee and e, are all dependent on i, 8,s^ and ?. 

function only of ŝ , 2, it follows that 
The functions 20 = 20(s ,̂?) and + = +(s^,?) need to be specified. Because B0 is a 

where f f  = af/as^. Also, at a given instant of time, 

(St)*  = (sa,)2 + (sgo)2 , 



242 

leading to 

D. G. Lynch, S. L. Waters and T. J. Pedley 

This gives 

and hence 

Moreover, since 

we have 

5 
a0 = 1 Cl(3,?)d3 = uI(s^,?). 

sin 4 = aft, cos 4 = C1 

and hence from (2.4) 

2 = a l  -af,-?cosO, 9 = af +Cl?cos8, 2 = ?sine.  (2.9) 

To be able to convert the coordinate system = (a,g,2,?') to ti = (? ,O,s^,?) ,  
i = 1 . .  .4, we require the partial derivatives (e.g. d/d219,2,?) in terms of the 
a/at i  (e.g. a/a?le,$,;). Using (2.9) to find a a j / a t i ,  j = 1 . . . 3 ,  i = 1 . .  . 4  and the chain 
rule on j z j ,  j = 1.. . 3  to obtain four sets of three simultaneous equations for atJ/aAi, 
we obtain the required relations : 

where 

C2($ ?) = a2fsI; - af$1 (2.11) 

and 

h(i, O,s^,?) = 1 - aPf,-tC;' cos 0 .  (2.12) 

Note that hAs^ is the displacement of a point when ŝ  changes and ; , O , ?  do not. 
In transforming the vector operators that arise in (2.1) and (2.2), it is necessary 
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to consider changes in the coordinate directions (2.5) with i',O,sh,t. The relevant 
derivatives are 

(2.13) I = U ~ ~ C T '  sin Oe, , 
F,O,? 

Now, if we define (G',iY,S') as being the dimensional velocity components in the 

(?, 0, sh) directions and $ as the dimensional pressure, and substitute (2.10) and (2.13) 
into (2.1) and (2.2), we obtain the continuity, ?-momentum, &momentum and s -̂ 
momentum equations as follows 

1 1 
r r 

(2.14) 12; + ̂ i3k + h-'Sh + ,Zif - af,-:h-'C,' (cos 8 ii' - sin 0 6') = 0 ,  
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8; +zY8; + i6l;i.k + h-'8'85 - af::C,'h-' (cos 0 i;' - sin 0 6') 8' 
r 

2 - 2 A l  - a2 fi&; h w 

(2.17) 

where v is the kinematic viscosity of the fluid. 
It should be noted in the above that li' is the inertial velocity vector of the fluid, 

but it is written in terms of the new coordinate directions e,,ee and e,. It is non-zero 
on the boundary of the tube since no slip requires the fluid velocity to be equal to 
the velocity of the moving boundaries. Our aim is to formulate a system of velocity 
components that gives zero velocity on the boundaries. Firstly, therefore, we have to 
find the velocity of these moving boundaries. From our assumptions we know that 
a given point on the boundary iB = PO + ae, has a fixed value of arclength s  ̂ as it 
moves around (although the position vector of the associated point on the centreline, 
io, does vary with time). Since ;(= a) and 0 are also constant with respect to time 
we can state that on the boundary 

PI = -  d 
a? p,e,j d? 

Hence for a boundary point, 

P B  = a Lf;Cl - af:I;] {cos 0 e, - sin 0 ee} - a [af&,' cos 0 - Cll;  - af,-fi] e,. (2.18) 

If we also consider an internal point of the disc, iD = PO + ie ,  ,i E [O,a], such that 
i, 0 and s  ̂ remain constant (i.e. there is no motion relative to the tube) then 

PD = a LfiC, - afsI;] {COS 0 e, - sin 0 ee} - a [?f&,' cos 0 - C11; - af,-fi] e,. (2.19) 

Thus if we make the transformation 

B' = B + P,, (2.20) 

we have the much more convenient boundary condition of 

l i= (G,6 ,8)=0 on ? = a .  (2.21) 

Finally, therefore, substituting (2.20), with (2.19), into (2.14)-(2.17), we derive the 
complete new set of equations of motion: 
continuity: 

1 1 
r r 
-a~; 'h- l  (f$$ [cos 0 G - sin 0 61 + i cos 6 [f:$; + a2f; f : j fS;~, '])  = 0 ,  

a; + 76, + hK'8: + 72 
(2.22) 
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ee : 

e,  : 

6; +GG+ + A B G ~  + h - l ~ f i :  - af:;~;'h- '  (cos 0 ii - sin 0 $1 8 

= --fit + v Gpp + ,Bee 1 - h-'Gpt - ?-'h-2& + ,wp 1 ,  - ?-'h-'& 

r 
-2af$;~;' (cos 8 G - sin 8 6) - a i ~ y ' h - '  cos O [f$,-; + a2fsfs,-f&,2] 8 
+ a 2 f s f E  + acliE - u?c;' cos 8 [f3;; + ~ ~ f : f ; c ; ~ ]  

r 

h-' sin 8 0,- + , sin 8 8 0  - cos 6' 8p - u2f&C;2h-28 ) 1 1 ( r 

Ph { r2 

+af:,-C,'h-' . (2.25) 

In many ways equations (2.23)-(2.25) are simpler than the corresponding equations 
(2.15)-(2.17). Most of the inertia terms linear in the unknown velocity components 
have been eliminated by the transformation (2.20). The remaining terms on the left- 
hand sides of the ?- and &equations, (2.23) and (2.24), are essentially the same as for 
steady flow except for the terms involving f,;G which is a 'Coriolis force' associated 
with rotation of the frame of reference, terms involving ?f,",, representing 'centrifugal 
force', and terms involving f ; ;  and I;;, which correspond to acceleration of the frame of 
reference. Similarly in the $-equation (2.25), the f$;(G, 6) terms are 'Coriolis force', the 
? f $  terms are 'centrifugal force', and the f ~ ,  I;; and Pfs;; terms represent acceleration 
of the frame of reference. The additional 'new' inertia term is the one linear in 8 at 
the end of the second line of (2.25); this cannot be simply attributed to any of the 
classical 'forces' seen in the systems translating and rotating with uniform acceleration 
and angular velocity, and represents spatial variation in these quantities. The new, 
intrinsically unsteady, terms on the right-hand sides of (2.23) and (2.24) are viscous 
terms associated with the deformation of the frame of reference velocity kD (equation 
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/ 

FIGURE 3. Diagram to show the time-dependent curvilinear coordinate system used to obtain the 
governing equations (uniform curvature). 

(2.19)). All the other terms, on both sides of the equations, arise also in steady flow 
(see Pedley 1980, chapter 4). 

The main object of the paper, in both $3 and $4, is to calculate the contributions 
of the new terms in the equations to the wall shear stress, i.e. 

axial wall shear stress = 

azimuthal wall shear stress = - i j ? I ~ = ~ .  
(2.26) 

3. Flow in a tube with uniform, time-dependent curvature 
3.1. Formulation 

In this section we consider the special case of a curve of uniform curvature which 
varies with time. We postulate that one cross-section, at s = 0, is fixed, with its centre 
at the origin and the centreline locally in the 9-direction (figure 3). 
Then the equation of the centreline is 

(3.1) 
A h  a 

$0 = af(s, t )  = ~ sin(s6(t)), 

where the radius of curvature of the tube is ad(t)-', and s = $/a,  t = ?/T  are the 
dimensionless arclength and time respectively ( T  is the time scale for the curvature 
variation). We non-dimensionalize the governing equations (2.22)-(2.25), first by 
scaling all lengths with a, all velocities with a scale Uo and pressure with pUo2. With 

s( t )  
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f given by (3.1), and noticing that the other functions appearing are 

C1 = sins6, I = E1(1 -coss6), h = 1 +6( t ) rcos8 ,  ( 3 4  

we obtain the following equations: 
continuity: 

(3.3) 
1 6cos0 6sinO StrcosOS 

= 0 ,  '+ h 
U - -  

1 1 
r h  r h h 

U r  + - U e  + -w, + -U + - 
e, : 

1 1 1 2  Stu, +uu, + -vue + -wu, - -u 
r h r 

6 cos8 
h 

(1  - C O S S ~ )  - Sts6 cos8 ( 2 w  + F) - - W 2  

1 
- - --p, - - (2 ( b ( u  + ru, - ug) cos OW - hw, + u,) 

rhRe a0 r 

2St cos 06 - 
Reh ' (3.4) 

1 1 1 
r h r 

Stu, +UU, + -uug + -WU, + -UU 

6 sin 0 
(1 - coss6) + Sts6 sin0 W 2  

1 1 
r 

2 ~ t  sin 66 
+ Reh ' 

e, : 

1 1 
r h 

Stw, +UW, + -Owe + -WW, + St2 

2St2sh2 St2s$h + ~ 

6 6 
+2Stus6 cos 8 - 2Stus6 sin 8 - 

6 cos 8 6 sin 8 St6r cos 6 
uw - - vw+ W +- 

h h 
1 1 

- - - k p ,  + ($ ( k ( h w 0  - 6r sin Ow - ru,) 

-2 ( r(-hwr - 6cosOw +us)  
ar h 

Here St is the Strouhal number and Re is the Reynolds number, defined by 

a U0a Re  = -. S t  = -, 
T UO v 

(3.5) 

(3.7) 

As expected the equations reduce to the time-independent case (see Pedley 1980, 
equations (4.1)-(4.4)) when 6 = 0. 

We proceed to solve the above equations in the simplest limit only, in which the 
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curvature is small and varies relatively slowly ( S t  << 1) with a small amplitude: 
6 = 60( 1 + E sin t )  where 60 << 1, E << 1. A steady mean pressure gradient is assumed, 
i.e. we put 

-6; = (? - $ 6 ,  

--ps = G - p$(r, 8, s, t )  . 

(3.8) 

(3.9) 

and thus if is non-dimensionalized with respect to pU,’/a then 

We define the Dean number as 

D = Re2G(260)’l2. (3.10) 

D is taken to be 0(1) as 60 + 0, and UO (in R e )  is taken to be the peak velocity in 
steady Poiseuille flow in a straight tube, driven by the same mean pressure gradient. 
Thus we seek the first non-quasi-steady effects on Dean’s steady solution, up to the 
first contribution to steady streaming. 

3.2. Solution 
As in the steady case, it is convenient to rescale the axial velocity and the coordinates 
so that the centrifugal force terms are the same order of magnitude as the viscous 
and inertial terms: w + w ( 2 6 0 ) - ~ / ~ ,  s + s(260)-’/~. 

Further, the Strouhal number, St, is scaled via 

St  + ( 2 6 I p 2 S t  

and a small-parameter expansion is then carried out in powers of (260)’/*: 

w = wo + (260)’/*W1 + (260)w2 + ... , 
u = uo + (260)1/2u1 + (260)u2 + ... , 

= Do + (260)1/2u1 + (260)Q + ... , 
p = po + (260)”2pl + (260)p2 + ... . 

The boundary conditions are u = u = w = 0 at r = 1. 

continuity: 
At 0((260)O), (3.3)-(3.6) become 

1 1 
U0r + -VOO + W O S  + -UO = 0 ,  

r r 
er : 

(3.11) 

(3.12) 

L 

1 1 
= ---Po0 + - 

r R e  

e, : 

+ - - -(woo) - -(-TWOr) . (3.15) 
rRe  88 r ) i r  ) 
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At this order the equations are the same as Dean's, apart from the factor (1 + e sin t ) ,  
and the flow is therefore quasi-steady. The axial velocity wo is independent of s and 
the transverse velocities uo and v g  can be derived from a streamfunction yo: 

1 
r uo = -woo,  00 = --Yo r .  

The Dean solution is obtained in powers of D and is as follows: 

n=O 

cos 8 r( 1 - r2)( 19 - 21r2 + 9r4 - r6)( 1 + E sin t )  
1 D  1 D3 
4 Re 45 x S5 Re 

= --(I - r2) + ~- 

+o (2) , (3.16) 

(1-r2)2(1+Esint)+0 (g) . (3.17) 
00 

= C D2"yon = ___- 
9 x S3 Re 

n= 1 

es : 

The solution is again sought as a power series in D, of the form 

n= 1 n = l  n=l 

and this leads to a sequence of simple linear problems. 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 



(3.26) 

Since wwt = 0 and w11 = 0 at r = 1 it follows that w11 is identically zero and so, from 
the continuity equation, u11 and 1111 can be written in terms of a streamfunction yll. 
By eliminating p11 from the i and 8 equations, y11 is found to be 

yl l  = &St es cos t sin 8 r(1- r2)2. 

stw()ot = -v 1 2  w11. 

rRe 

(3.27) 

The O(D2) equations are 

(3.31) 

From the axial equation w12 is found to be 

w12 = -&St es cos t cos B (-3r + 6r3 - 4r5 + r7 )  (3.32) 

and u12 and 012 are found to be proportional to s cos t. 
At O(260) we again seek solutions for w2,u2,u2 in powers of D, in the form 

a2 rn 

n=l n=l n= 1 

and the O(D) equations are 
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(1 + E sin t)r  cos 8 1 

O = -  -Pols + -v2w21 2Re2 Re 

wo)) . (3.37) 
sin 8( 1 + E sin t) -r cos 8( 1 + E sin t) 

wo) -: ( 2 r Ae (:o ( 2 
+- - - 

From the axial equation w21 is given by 

3 
32Re 

w21 = -(I + E sin t) cos 8(r3 - r )  

which is proportional to the basic quasi-steady Dean solution again. Since w21 is 
independent of s there exists a streamfunction y)21 and it can be seen that this is 
proportional to s sin t. In fact we find that y)21 is 

(3.38) 14121 = --St2Rees 1 sin t sin 8(r7 - 4r5 + 5r3 - 2r), 

and also that p21 is given as 

p21 = & St2 Esr sin t cos B . (3.39) 

At O ( D 2 )  the flow separates into mean and time-dependent parts. The equations 
are 

1 1 1 1 
r 2 2 

~ 2 2 r + ; ~ 2 2 ~ + ~ 2 2 ~ + - ~ 2 2 + - ( 1 + ~ s i n t ) u o l  - - ( l+~s in t )uo l  = 0 ,  (3.40) 

(3.41) 

1 
= --P22R r + [s-indep. terms] + - Re (' ar (' r ( 0 2 2  + ru22r - U22R) ) - as ( 'w22R) )  r 3 

(3.42) 

1 
Re 

~ t ~ 1 2 t  + ~ 2 1 w m r  + ~ 0 0 ~ 2 1 s  = -v2w22 - ~ 0 2 s .  

yi2 = -& sin(28)s2e2ReSt2 (r10 - 20r6 + 36r4 - 17r2). 

(3.43) 

From the radial and circumferential equations of motion the mean secondary stream- 
function, y)i2 and the mean pressure, pi2,  can be found and are given by 

(3.44) 

The pressure is found to be 

pi2 = $ (& ~ o s ( 2 8 ) R e S t ~ ~ ~ s ~ ( 4 1 r ~  - yr4 + 60r6 - 1%') 

+&ReSt2E2s2 ( i r 2  - :r4 - $r6 + r ' ) )  
(3.45) 
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It should be noted that these are the non-quasi-steady contributions to the stream- 
function and pressure and are dependent upon s2. 

Finally, the O(D3) axial equation is 

and from this equation it is found that the mean axial velocity is given by 

w23 = St2 s2 (237817036800 ( r2  - 2380r4 + 2415 r6 - 1260r' 

+ 350 r10 - 48 d2)) cos( 2 8 ) 
+St 2 Ree 2 2  s (&(-37 + 180r2 - 360r4 + 380r6 

- 225r8+72r" - 10r12)). (3.47) 

The mean terms in 1p22 and w23 represent the first effect of the time-dependence on 
the mean flow, and are therefore the leading terms in the steady streaming. 

In summary, the axial velocity is given by 

D 
4Re 
+ & E ~ ~ s B r ( l  D3 -r2)(19-21r2+9r4-r6)(1 +es in t )+O - 

+(260)l/~ (D2(-Stfscos tcos 0&(-3r + 6r3 - 4r5 + r7)) + O(D3)) 

+(260) (A &( 1 + sin t )  cos 8(r3 - r) + (D2Re)time-dependent terms 

+(D3(St2 Re e2 s2 ( 23781~036800(923 r2 - 2380 r4 + 2415 r6 - 1260 r8 

+ 350 rl' - 48 r")) cos( 2 0 ) 

+St2  Re e2 s2 (&(- 37 + 180 r2 - 360 r4 + 380 r6 - 225 r8 + 72 rlO- 10 rl*)) 

+ time-dependent terms) + O(D4Re)) + O ( ( ~ S O ) ~ / ~ ) .  (3.48) 

w = - - - ( I  - r 2 )  

(::) 

) 

The secondary streamfunction is given by 

w = 2 9x8' @ r ( l -  Re +r2)(1- r2)2(1+ c sin t )  sin 0 + o (g) 
+(260)"2(DStescos t sin 6&(r5 - 2r3 + r )  + O(D2)) 

+(260)(D(-St2Rees sin t sin B&(r7 - 4r5 + 5r3 - 2r) 

+ D 2 ( - A s 2 e 2 R e S t 2  141557760 sin(28)(r1' - 20r6 - 17r2 + 36r4)) + O(D3Re)) 

+ 0 ( ( 2 ~ ~ ) ~ / ~ ) .  (3.49) 

The quantity of greatest interest is the wall shear stress (WSS, equations (2.26)) which 
can be split up into axial and azimuthal components. The leading contributions to 
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the mean and time-dependent parts of each are as follows: 

Mean axial WSS : = - 1 D  - + ___ - O 3  cose+o (g) 
2 R e  45 ~ 8 ~ R e  

+(260) ( 1189&1840 D3 R e  St2 s2 e2 cos( 2 8 )  + O(D4Re))  , (3.50) 

($) ccos0 s i n t + O  
6 D3 

Time-dependent axial WSS: = ~ - 
45 x 8s R e  

+(260)’/~ (A D 2  Stsecos t cos0 + O ( D 3 ) )  , (3.51) 

Mean azimuthal WSS: = ~- O2 sin*+O (g) 
6 x 82 Re 

+(260) (- D 2  R e  St2 s2 e2 sin(2 8 ) + O(D3Re))  , (3.52) 

esin8 s i n t + O  
1 D2 

Time dependent azimuthal WSS : = ~ - 
6 x g 2  R e  

+ (260)1/2 ( k D S t s e c o s t  sin0 + O ( D 2 ) ) .  (3.53) 

3.3. Discussion 

The above analysis has calculated the principal corrections introduced by the time- 
dependence of curvature to the axial and secondary flows found by Dean (1927,1928), 
with particular reference to the wall shear stress. 

As discussed in $2 the introduction of time-dependent curvature into the system 
has led us to choose a non-inertial frame of reference. With respect to this frame 
of reference the position of the centreline of the tube is fixed. However with respect 
to an inertial frame of reference the motion of this centreline (and indeed the pipe) 
may be thought of as consisting of two parts: a rotational part that gives rise to 
‘Coriolis’ and ‘centrifugal’ forces and a translational part. It can be shown that the 
centrifugal effects due to the rotation of the pipe and the translational effects due to 
the movement of the centreline can be absorbed into a reduced pressure. 

At O((6,)O) the flow is quasi-steady Dean-type flow. There is a correction to 
straight-tube Poiseuille flow due to the centrifugal effect of flow along a curved path, 
and there is a secondary motion directed towards the outside of the bend in the centre 
of the tube, and back towards the inside near the walls. 

At O((260)~’~) a further secondary streamfunction D y l l  is derived from the Coriolis 
terms. This secondary streaming is also directed towards the outside of the bend in 
the centre of the tube for cost > 0, when the rotation is in the positive sense, and 
towards the inside of the bend for cos t < 0, when the rotation is in the negative sense. 
Thus for 0 < t < and i7c < t < 271 faster-moving fluid is moved more towards 
the outside of the bend than in Dean flow while for i x  < t < i7c faster-moving fluid 
is moved more towards the inside of the bend. This is represented by the term w12 
and results in an increase in axial wall shear stress on the outside of the bend for 
cos t > 0 and on the inside of the bend for cost < 0. The same effect arises in a 
rotating pipe of fixed (e.g. zero) curvature and is solely due to the rotation. We note 
that the contribution to azimuthal wall shear stress is O((260)”~DStcs) compared 
with O ( D 2 / R e )  for Dean flow. Dimensionally, therefore, the Dean azimuthal wall 
shear stress is O ( ( 2 6 0 ) 6 ~ a ~ / p ~ v ~ )  and the new contribution is 0((260)&8a2/pv2 T ) .  
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Similarly, we see that the contribution to axial wall shear stress is O((2S0)1/2D2Stcs) 
compared with O ( D / R e )  for Poiseuille flow and O ( D 3 / R e )  for the first Dean correction 
to Poiseuille flow. Dimensionally the first Dean correction to axial wall shear stress is 
0 ( ( 2 6 0 ) 2 ~ a ~ / v ~ p ~ )  while the new contribution is O((260)&2ch5/v4p2T) .  

is found that is out of phase 
with y11. In the first quarter of the cycle, when the rotation is in the positive 
sense, y21 is in the same direction as y11 but is increasing in magnitude while yll is 
decreasing. In the next quarter-cycle, corresponding to negative rotation, y21 retains 
its direction, despite the change in rotational direction, but decreases in magnitude as 
it adjusts to the change in the direction of rotation, while y11 has reversed its direction, 
corresponding to the change in rotation direction, and increases in magnitude. In 
the next quarter, y21 reverses direction, so that it is now in the same sense as 
~ 1 1 ,  and increases in magnitude while yll maintains its direction but decreases in 
magnitude. Finally in the latter quarter of the cycle, y11 once again changes direction 
and increases in strength while y21 maintains its direction, in the opposite sense to 
the rotation, but again decreases in magnitude. Thus y11 is the irrotational response 
of the fluid due to the rotation of the tube while y21 represents a delay or ‘lag’ 
in the fluid response, accounting for the inertia of the fluid. 1 ~ 1 1  changes sense as 
the rotation changes direction while y21 ‘lags’ behind with a phase shift of in (see 
figure 4).  

Also at this order there is a steady secondary streaming that is derived from 
the convective inertia terms and also from the Coriolis term -Strscostcos8w12 . 
At this order Dw12 is a Dean-type correction to the axial velocity while D2w22 is 
a time-dependent axial velocity correction, driven by the time-dependent secondary 
streamfunction y21. It results in an increase in axial wall shear stress on the outside 
wall for the first half of the cycle and a decrease in axial wall shear stress on the 
outside wall for the second half of the cycle. ~ 2 3  is the mean part of the axial velocity 
that is generated by the inertial convection of the Poiseuille flow due to the mean 
secondary streaming and the inertial convection of the primary correction to the axial 
flow by the primary correction to the secondary streamfunction. 

The first effect that arises due to the curvature being time-dependent originates from 
the St2  (-8/S2 + 2 6 / S 3 )  sins6 term in (3.6); this comes from the terms representing 
the acceleration of the frame of reference, involving f ~ ,  I E ,  Pf$;;. The first power in 
the sins6 series cancels with the other terms involving f ~ ,  IE ,  Pf$;; and so the first 
effect is order St2 ( - 8 / S 2  + 2 6 / S 3 )  (-s3S3/3!) which, after scaling, gives rise to an 
axial velocity term of order ( 2 ~ 5 0 ) ~ .  This gives a wall shear stress at a higher order 
in (260)1/2 than has so far been calculated. Since all the calculated flow components 
depend algebraically upon s, the above effects become more pronounced as one moves 
farther from the origin. The solution will no longer be valid for Is1 = O(S,’/2), i.e. 
dimensional distance O(uS,”’). 

The streamfunction is now 

At O((260)’) a time-dependent streamfunction, 

A secondary stagnation point occurs where 8 = $T and y r  = 0. Dean found the 
stagnation point to be at r = ro = 0.43. To find the correction due to varying 
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Pqsitive rotation: 
0 <t < x/2 

y ,  1; decreasing strength 

Negative rotation: 
6 2 1  t< x 

y ,  ,; increasing strength 

Negative rotation : 
x t< 3x12 

yl 1; decreasing strength 

yZ1; increasing strength 

y2,;  decreasing strength 

y21; increasing strength 

Positive rotation: yll; increasing strength 
3x12 < t < x  

y21; decreasing strength 

FIGURE 4. The directions and strengths of the first two corrections to the Dean secondary 
streamfunction: (a)  0 < t < 7112, rotation in the positive sense; ( b )  7112 < t < 71, rotation in the 
negative sense; (c) 71 < t < 3x12, rotation in the negative sense; ( d )  37112 < t < 271, rotation in the 
positive sense. 

curvature, we take r = ro + r', where lr'l << ro, and obtain 

r' = 0 . 1 ( 2 6 0 ) ' / ~ ~ e ~ t f s c o s  tD-' + 0(260). 

Thus the secondary stagnation point is moved outwards when cos t is positive and 
inwards when cos t is negative. 

4. Flow in a time-dependent sinuous tube 
4.1. Formulation 

In this section we consider the flow through a pipe of circular cross-section, radius a, 
whose time-dependent shape is a small oscillatory perturbation from a straight pipe. 
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Steady and pulsatile flow through fixed sinusoidal tubes of very small amplitude have 
been studied by Murata, Miyake & Inaba (1976) and by Inaba & Murata (1978). We 
here suppose that somewhere upstream the straight pipe is undisturbed. The variables 
i ,  ŝ , t, a, 0, G, 8 are again non-dimensionalized with respect to a, a, T ,  UO, UO, UO, pUi, 
where UO is the mean axial velocity upstream and T is the period of the imposed 
oscillation. We consider the centreline to be defined by 

f(s^, ?) = ebg(s, t )  (4.1) 
where it is assumed that E << 1 and, initially, b - O(1). The non-dimensionalized 
versions of equations (2.22)-(2.25) are then 

1 1 
r r 

U ,  + - ~ g  + h-lw, + -U 

-t-bC;'h-' (g,, [cos 0 u - sin 8 u ]  + St r cos 8 [g,,, + ~ ~ b ~ g , g , , g , , C ; ~ ] )  = 0 ,  (4.2) 

1 1 
r r 

Stut +UUr + -UUO + hK1WU, - -u2 + Ebg,,C;'h-' cos 8 w2 

+2 S t  Ebg,,CT1 cos 8 w + St2eb [g,,C1 - gJ,,] cos 8 - St2E2b2rg:,C;2 C O S ~  8 

1 
r2 

- - U O  - h-lwr, + ~ b C ; ' h - ~  cos 8 [g,,, + ~ ~ b ~ g , g , ' , C ; ~ ]  [W + ru,] 

+ c=bg,,C,'h-2 cos 8 w, + 2 S t  EbCT'h-' cos 8 [gs,, + ~ ~ b ~ g , g ~ , g , , C ; ~ ]  } , (4.3) 

1 1 
r r 

S t ~ t  +Uur + - U U O  + h-'Wu, + -UU - St2Eb [g,,C1 - gsIt,] sin8 

-ebg,,C;'h-' sin 8 w2 - 2 S t  cbg,,C;' sin 0 w + St2e2b2rgitCF2 sin 8 cos 8 
1 1 

r R e  7 r r 
- - - -PO + - Urr + hK2U,, - r-'h-'ws, - - ~ , g  + rP2h-'us + -0, 

- 
-r 2h-'u - EbC;'h-'g,, cos 8 u, - fbC;'h-2g,, sin 8 w, 
-~bC, 'h-~  [g,,, + ~ ~ b ~ g , g ; , C , ~ ]  [sin 8 w - r cos 8 us] 

- 2 St ebC;'h-' sin 8 [gs,, + ~ ~ b ~ g , g , , g , , C ~ ~ ]  (4.4) 

1 
r 

St wt +UWr + -UWO + h-' W W ,  - ebg,,C;'h-' (COS 8 u - sin 8 u )  w 

-StfbrC;'h-' cos 6' [gsst + ~~b~g,g , ,g , tC;~]  w + St 6 
2 2b2 

g,gtt + St2CiJtt 
-2 StebgStC;' (cos 8 u - sin 8 u )  - St2ebrC;' cos 8 [gstt + ~ ~ b ~ g , g : ~ C ; ~ ]  

1 1 
R e  r 

- h-lu,, - r-'h-2us + -w, - r-'h-lue, 

1 + fbg,,C;'h-' (h-' sin 8 us + - r sin 8 wg - cos 8 W r )  - F2b2g~,C;'h-'w} , (4.5) 

Following Smith (1976a,b), we note that because R e  >> 1 the core flow is essentially 
where the Strouhal and Reynolds numbers are again defined by (3.7). 
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inviscid and its perturbation from Poiseuille flow only O(E) .  Accordingly, the flow 
field in the core is expanded asymptotically: 

(4.6) 
u = Eu1(r,O,s,t) + 0 ( c 2 ) ,  w = wg(r) + Ew1(r,o,s,t) + O(E' ) ,  

v = E V ~ ( Y ,  Q,s,t) + O(C' ) ,  p = -- + qI ( r ,Q , s , t )  + O(e2) , 
S 

Re 

where Poiseuille flow takes the form wg(r) = i(1 - r'). We also note that I,, = 

O(e2b2), h = 1 + O(Eb), and C1 = 1 + O(f2b2) .  With the assumption that S t  << 1 and 
Re-' << E first-order equations of motion: 

At this order the core flow is quasi-steady, although it is the time-dependent 
bg,, cos 8wi , bg,, sin Ow; terms that force a non-trivial solution. The inviscid flow 
boundary condition is u1( 1,8, s, t )  = 0. 

The unique solution that satisfies this condition and matches to the flow in a 
straight pipe upstream is 

(4.8) 

Transformed back to the inertial frame of reference, this solution shows that, at this 
order, streamlines in the core carry on in straight lines parallel to the x-axis. The 
solution is the same as that given by Smith (1976a,b) for pipe flows perturbed by 
non-axisymmetric wall distortions. 

The axial velocity does not satisfy the no-slip boundary condition, w( 1,8, s, t )  = 0, 
(in fact, w1 = -2 cos 0 g at r = 1) and hence a (viscous) boundary layer is required. 
Matching of the terms in the continuity equation and the inertia, pressure and viscous 
terms in the axial momentum equation requires this layer to be of thickness E which 
must in turn be O(Re-1'3). The time-dependence has a simple but non-trivial effect 
if, further, S t  = O(E).  Then the flow field is given by 

u = U + O(Re- ' ) ,  v = Re-1/3V + o ( R e ~ ~ / ~ ) ,  
w = W + O ( R ~ C ~ / ~ ) ,  p = ReC2l3P + O(Re- l ) ,  

where r = 1 - Re-'I3Y defines the boundary-layer coordinate Y .  This yields the 
non-quasi-steady boundary-layer equations 

I u1 = -bwo cos 8 g,, v1 = bwo sin 8 g,,  
~1 = bwgr cos 8 g , p i  = 0. 

} (4.9) 

(4.10) 
u y  + VO + w, = 0 ,  P y  = 0,  

vt + uvy + vve + wv, = -Po + v y y  , 
w, + uwy + vwe + ww, = -P, + w y y  , 

with boundary conditions 

and matching conditions with the core flow of 

V + O ,  W - i Y - i b c o s O g  as 

4.2. Linearized solution 
To solve these equations we first linearize with respect 
E << b << 1 so that b is not so small as to interfere with 

U = V = W = O  on Y = O  (4.11) 

Y +m. (4.12) 

to b by assuming = 
the orders of the equations, 
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( U , W -  i~ ,P)=b(U, ,W, ,P , )cos8 ,  V=bV,sinO, 

where U,, V,, W, are functions of Y, s, t and P, is a function of s, t only. We can now 
use a Fourier transform approach to solve the equations. Defining 

W"(  Y,  a, y )  = /I 1: W,( Y,  s, t)e-iase-ivtds dt , etc., (4.13) 
--m 

we obtain the transformed boundary-layer equations : 

(4.14) 

Eliminating U* to give 

iy W; - ;v* + iiaYW; = w ; ~ ~ ,  (4.15) 

and introducing a new radial variable 5 = A'/3Y + t o ,  where d = iia and 50 = iyA-2/3 
reduces equations (4.14), for V * ,  and (4.15), for W;, to inhomogeneous Airy equations. 
Their solutions (cf. Smith 1976a) satisfying the boundary conditions at Y = 0 and 00, 
are 

V' = -d-2/3p*L(5) (4.16) 
and 

W* = B'(a, y) lo' Ai(q) dq + id-5/3P*L(5), 

where 

(4.17) 

(4.18) 

Here, Ai(5) is the Airy function and L(t0) = 0,L(00) = O , L C ' ( ~ ~ )  = 1 so that the 
wall boundary conditions are satisfied and the azimuthal velocity matches that in the 
core. The branch chosen for is that which implies a branch cut along the positive 
imaginary a-axis. 

To find the unknown P* and B', we use the matching condition for the axial 
velocity, namely 

B" lorn Ai(q) dq + 0 = - i s* ,  

iaP' = Wjyly,o = A2l3 (B*Ai'(<O) + iA-'/'P') , 

and set Y = 0 (or 5 = 50) in the axial equation to give 

Thus, 

B* = -; (6 Ai(q) dq) -' g' , 

/ r I  \ -1 

(4.19) 

(4.20) 
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(4.21) 

hence we have explicit expressions for the transformed pressure and axial and az- 
imuthal wall shear distributions. They can be inverted for different centreline func- 
tions, g(s,t). These results differ from those of Smith (1976a), as generalized for 
arbitrary functions g by Pedley (1980, $4.5), in the fact that t o  # 0 because of the 
time-dependence of g .  

We now consider a pure standing wave, 

1 (ei(ks-wt) + ei(ks+wt) 
41 

) + C.C. (4.23) g ( s ,  t )  = sinks cos wt = 

where C.C. means complex conjugate and k > 0 , o  > 0. This gives 

n2 
g” = T ( d ( a  - k)d(y + w )  + d(a - k)d(y - 0) 

1 

-6(a + k ) S ( y  - w )  - 6(a + k ) S ( y  + w))  (4.24) 

and on inversion of the pressure and wall shears we obtain 

P = ( q ( 1  +k2) - ’  [,?(--to) (l~Ai(q)dq)-lei(ks-w‘) 

+Ai’(tO) (6: Ai(q) dq) -lei(ks+wt)] + c.c.) b cos 8 ,  (4.25) 

where now A = iik and 50 = iwA-i. 

4.3. Results and discussion 
The above expressions have been evaluated numerically for various values of k and 
w and compared with asymptotic results for It01 + 0 and 1501 + 00. The numerical 
scheme is a fourth-order Runge-Kutta scheme with variable step size, with the values 
of the Airy function and its derivatives found using the NAG routine sl7dgf. These 
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FIGURE 5. Graphs of dimensionless centreline shape (-), axial wail shear rate (- - -), azimuthal 
wall shear rate (- - - - -) and pressure ( . . . . . . )  for k = 71/5,w = 5,115, = 10.82: (a) ot = 0, 
( b )  cot = n/4, (c) ot = n/2, ( d )  wt = 3n/4. 

4 .....' 6 

results can be seen in figures 5, 6 and 7. Since the wall shears and pressure are a 
combination of sine waves, values for ot > n are given by P ( o t )  = -P(ot - n). 

For high values of ltO1 (k  = x/5, o = 5,1501 = 10.82; figure 5 )  we see that all three 
quantities vary approximately as standing waves. It can be seen that the pressure 
leads the centreline displacement by around x/2 in ks and lags behind by about 
x/2 in cot. This means that it is maximum when ks = 0 and mt = x/2, i.e. when 
the centreline is straight and where the point of maximum centreline gradient would 
normally be. It is zero when the centreline is most curved. The azimuthal wall shear 
stress lags x/2 behind in ks and leads the centreline displacement by n/4 in cot. This 
means that it is maximum when ks = 0 and wt = 3n/4, i.e. when the centreline is 
becoming most curved and at the point of maximum centreline gradient. Finally, the 
axial wall shear stress perturbation is out of phase (by x) in ks and leads by x/4 in 
cot. This means that it is maximum when ks = x / 2  and wt  = 37c/4, i.e. when the 
centreline is becoming most curved and where g is at its minimum value. Both the 
shear stress contributions are zero when the centreline is becoming flat. These results 
agree with the 1501 -+ co asymptotic results which are as follows: 

P -+ ;k(  1 + k2)-'co sin ( k s  + i n )  cos (cot - i n )  b cos 19, (4.28) 
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FIGURE 6. As for figure 5, with k = 2n,w = n/5, 1t01 = 0.293. 

V Y I Y = O  + 7 ' k  ( 1 + k*)-lcoi sin (ks - in )  cos (at + in )  b sin 8 ,  

WY ly=o - 7 + $k2(1 + k2)-1w1/2 sin(ks + TC) cos (wt + :n) b cos 8 .  

(4.29) 

(4.30) 

For low values of 1401 (k = 2n,w = n/5,1401 m 0.293; figure 6) we again have 
approximately standing waves, but the phase differences have changed. All three 
computed quantities are temporally in phase with the centreline displacement, but 
not spatially: the pressure, azimuthal and axial wall shear stress lag by around n/6, 
n/3 and 5n/6 respectively. These results agree with the 1401 + 0 asymptotic results: 

P + 3c22-5/3k5/3( 1 + k2)-' sin (ks - kn) cos(wt)b cos 8 , 

VY ly=o + 2-4/32k4/3( 1 + k2)-' sin (ks  - ~ T C )  cos(cot)b sin 8 ,  

(4.31) 

(4.32) 
C1 

- 1 + 3c12-4/3k'/3 1 - c2 ) sin (ks - i n )  cos(cot)bcos 8 ,  (4.33) 
w y = o  2 ( 3( 1 + k2)c: 

where c1 = Ai(0) = 3Y2l3/r(2/3) = 0.35502 and c2 = -Ai'(O) = 3-'l3/r(1/3) = 
0.2588 1. 

For an intermediate value we choose 1401 = 1 (k = 2,w = 1; figure 7) and 
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FIGURE 7. As for figure 5, with k = 2, w = 1, Ito/ = 1. 

find we no longer have approximate standing waves. The wall shear stress and 
pressure propagate in the negative s-direction. It is found that the maximum pressure 
occurs at ks = 2.625,wt = -0.816, the maximum azimuthal wall shear stress at ks = 
3.066, cot = -0.620 and the maximum axial wall shear stress at ks = 1.088, wt = 3.000. 
The important things to notice are that the wall shear stress distributions propagate 
with a significant speed only when the centreline displacement is small; the values of 
the wall shear stress are correspondingly low then. When the centreline displacement 
is not small, the wall shear stress distributions do not propagate very fast and the 
azimuthal wall shear stress is, as before, maximum at about the point of maximum 
centreline gradient and the axial wall shear stress is maximum just before the inside of 
the bend. The pressure, on the other hand, propagates uniformly and the maximum 
instantaneous value stays fairly constant. Together these observations reiterate the 
result of maximum azimuthal wall shear stress at the points of maximum centreline 
gradient and maximum axial wall shear stress at the inside of bends. The results 
of the two previous limiting cases can be considered as a sum of the two travelling 
waves combining in such a way as to form a standing wave. 

The above results show that even for small disturbances to Poiseuille flow, although 
the core flow remains effectively undisturbed, the flow within the boundary layer is 
substantially affected. For relatively fast oscillations the axial wall shear stress is 
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found to be largest on the inside of bends, i.e. when the wall is nearest the y = 0 
line. Even for relatively slow oscillations this is found to be the case (but at a 
spatial phase that is n/6 ahead). This is contrary to the quasi-steady curved tube 
result of higher axial wall shear stress on the outside of bends. The result can 
be explained by continuity: the flow along the x-axis is undisturbed to the order 
computed so the axial wall shear stress will be greater when the wall is nearest the 
x-axis. For high 1401 the azimuthal wall shear stress is proportional to -4 (the angle 
the x-axis makes with the centreline), but it precedes the centreline temporally. Its 
effect (at t = 0) is to move the fluid from the inside to the outside of the bend 
for 0 < ks < n/2, but from outside to inside for i n  < ks < n. That is, when $0 

is increasing/decreasing, the azimuthal velocity is negative/positive at 8 = in, i.e. 
the fluid is moving towards 8 = O/n. Finally (again for high 1 & 1 )  the pressure is 
proportional to the rate of change of centreline (but preceding the centreline spatially) 
so that when the centreline is straight and moving at its fastest rate the pressure is 
at its greatest. 

5. Possible application to coronary arteries 
The motivation for starting this work was the desire to see the effect of overall 

movement on the wall shear stress distribution in human coronary arteries. Here, 
therefore, we estimate the actual values of the dimensionless parameters that have 
arisen in the two preceeding sections. Whether considering major curved arteries or 
minor sinuous ones we have (to one significant figure): 

kinematic viscosity of blood v = 4 x 10-6m2s-1, 
period of heart beat T w 1s. 

radius a = 2mm, 
radius of curvature R = 3cm, 
peak blood velocity Uo = 0.3 m s-l; 

In the case of the major arteries ($3) we may take (Sugawara et al.1989, chapter 6): 

moreover, if we assume that the volume of the left ventricle is halved during systole, 
then the radius of curvature will be reduced by a factor 2-i/3 NN 0.8. From this, (3.7) 
and (3.10) we find 

do = 0.07, f = 0.1, Re w 150, St = 0.007, D NN 220. (5.1) 

The assumptions of small do, small 6 and small St are reasonably well satisfied, al- 
though the scaling St = O(Si’2) is not appropriate, and the additional assumption of 
(moderately) small D is not satisfied. For real applicability to coronary arteries future 
studies should extend the analysis to cover larger values of D. Note, however, that the 
order of magnitude of the ratios between the new terms in the wall shear stress (WSS) 
to the terms already known from Dean’s solution, from (3.50)-(3.53) with s = 0(1), 
are 

mean axial wall shear stress : 
time dependent axial wall shear stress: 
mean tangential wall shear stress: 

2 x 10-7, 
9 x 10-4, 
5 x 10-7, 

time-dependent tangential wall shear stress: 1 x 
Thus the main effect of the time-dependent curvature is expected to be on the 
tangential wall shear stress, but even that is predicted to be rather small. 
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In the case of a sinuous artery (figure 1) we may take 
radius a = 1 mm, 
wavelength 
amplitude EU = 2mm, 
mean blood velocity 

2xa = 8mm (so k w 0.8), 

Uo = 0.1 ms-'. 
Thus R e  w 25, which is not very large as assumed; E = 2, which is not small; and 
St  (= 0.01) is not O(E).  Thus the assumptions of 34 are not satisfied. Nevertheless, we 
can see what the linearized theory of that section gives for o = 2n and k = 0.8. This 
is a case of large 1 < 0 1  (w 12) so the pressure and wall shear stress perturbations vary 
as standing waves and the asymptotic results of equations (4.28)-(4.30) are the most 
relevant. However, it is clear that different parameter ranges must be considered for 
genuine applicability to human coronary arteries. 

The only previous studies to consider the effect of coronary artery motion on the 
blood flow within have been limited to the linear analysis of lateral or longitudinal 
acceleration of straight tubes, together with small deformation of the cross-section 
without change of area (Delfino, Moore & Meister 1994; Moore et ~1.1994). Rotation 
and curvature were not included. 

D.G.L. is grateful for financial support from EPSRC and S.L.W. from The Wellcome 
Trust. We would like to thank Professor W. A. Seed for letting us use figure 1. 
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